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Finally, some simulations done with various turbulence models for natural convection are
summarized.

Rayleigh Problem
The Rayleigh problem is a classic problem: find the heat transfer across a horizontal layer
of fluid when the bottom plate is heated and the top plate is cooled. Basically, what has'been

found is that the heat transfer takes place by conduction until a critical Rayleigh number is reached.
The Rayleigh number is
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where A T is the temperature difference across the layer of thickness L, and the critical value is
1708. Note that the Rayleigh number can be increased for the same fluid by increasing the
temperature difference across the layer. When that is done, it is found that at higher Rayleigh
number the flow pattern changes at discrete values of Rayleigh number. The laminar transitions
were first found by Malkus and Veronis (1958). Here we concentrate on higher Rayleigh numbers
leading to transient flows. (Incidently, the Rayleigh problem is often called the Rayleigh-Bénard
problem. This is inappropriate since Bénard’s experiments are clearly surface tension driven rather
than buoyancy driven.)

Consider the experiment done by Heslot, et al. (1987). This is not a classic Rayleigh
problem, but it shows all the same features very clearly and the experiment can be done at higher
values of Rayleigh number. Helium is placed in the cylindrical vessel, which is insulated on the
sides. By changing the pressure and the temperature difference , it is possible to cover a range in
Rayleigh number from 2000 to 10". For this geometry, the onset of convection is at Ra = 5,800.
Thus, for Ra lower than this, no motion occurs and the Nusselt number is 1.0 (representing
conduction only). For Ra between 5,800 and 90,000 laminar, steady convection takes place, and
the Nusselt number increases with Ra, as shown in the Figure 6.5.
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Figure 6.5. Nusselt Number versus Rayleigh Number, Heslot, ef al. (1987).
The experimental cell has a height and diameter of 8.7 cm.

For Ra between 90,000 and 150,000 a laminar convection takes place, but it is oscillatory with
regular periods. For Ra between 150,000 and 2.5 x 10° the flow is chaotic. For Ra between 2.5 x
10°and4 x 107 ‘soft’ turbulence occurs. This regime is when a boundary layer forms on the sides
and the vertical length scale no longer matters. In this region, the Nusselt number is given by

Nu=1+009 Ra®*? 25x10°<Ra<4x10’

For Ra between 4 x 10" and 10" ‘hard’ turbulence occurs. This regime is when the turbulent

boundary layer is interrupted with abrupt detachment of plumes which push into the central core.
In this region, the Nusselt number is given by

Nu=1+02Ra%*®? 4x10’ <Ra<10"

While not stated in this article, a later article by the same authors (Castaing, et al. 1989) gives the
Prandtl number as varying between 0.65 and 1.5 in these experiments. It isn’t constant because
the temperature and pressure are both changing, but it is relatively constant. These experiments are
also done for a small aspect ratio, since the height equals the diameter of the cylinder.

In a later paper, the same authors increased the range of Rayleigh number to 6 x 102, They
find that the Nusselt number obeys the formula

Nu = (0.23 £ 0.03 ) Ra%282 * 0006

Simulations of the regime of ‘hard’ turbulence have been done by Kerr (1996) using direct
numerical simulation. They did calculations for air (Pr = 0.7) with Ra between 5 x 10*and 2 x 10",
His simulations were for a geometry with the ratios 6:6:1, where the height is the 1.  The
important point about these simulations is that he had to use 96 Chebyshev orthogonal polynomials
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in the vertical direction and a Fourier method in the horizontal directions, using 128 x128 Fourier
modes. The calculation for Ra =2 x 107 took 400 hours on a CRAY Y-MP. Basically, the mesh
size needed to be smaller than the Kolmogorov scale of turbulence (about 30 pm for pipe flow) for
the direct simulations to be successful.

Kadanoff (1991) provide a summary of results. His picture of the structure in the ‘hard’
turbulence region is shown in the Figure 6.6.
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Figure 6.6. Sketch of Rayleigh Convection, Kadanoff (1991)

The thickness of the boundary layer scales with Rayleigh number as

A

.27
= Ra

and the mixing zone scale as scales with Rayleigh number as

dm =177
—L— = Ra

For Ra = 10" we have

Thus, the boundary layer covers 1% of the distances of the top and bottom, the mixing zone covers
10% of the distance of the top and bottom, and the central core (relatively uniform temperature)
covers 78% of the region.

An earlier computational effort (McLaughlin and Orszag, 1982) gave results which disagree
with the experiments given above. They predicted that the transition to chaotic convection occurs
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for Rayleigh numbers larger than about 9000. The experiments of Heslot, et al. (1987) give that
value as 150,000. While the geometries are not quite comparable, this comparison shows the
importance of using the latest computational techniques. McLaughlin and Orszag do, however,
give a good qualitative description of the flow, which is repeated here.

“One must be cautious about using the word ‘turbulent’ to describe these freely
convecting flows since this word is usually associated with high-Reynolds-number
flows, such as fully developed turbulent pipe flow, in which the energy is
distributed over a large range of spatial and temporal scales. The kind of convective
flows which we shall discuss in this paper typically have Reynolds numbers (based
on the maximum velocity and the thickness of the convection layer) of order 10-
100, and have over 99% of their kinetic energy contained in a single octave of
wavenumbers. Thus one should not confuse the kind of weak turbulence which we
shall discuss with, for example, the kind of strong turbulence encountered in pipe
flow and analyzed in the classic experiments of Laufer (1954). Nevertheless, the
convective processes studied here are of interest since they give an example of one
way fluid flow can become chaotic.”

Prasad (1999) used direct numerical éimulation to study a fluid layer heated from below.
Turbulence was present at Ra = 2 x 107, which was analyzed using a 96 x 96 x 128 grid. The
calculations took 3.3 hours of CRAY J90 time to simulate 0.16 hours of physical time.

Thermally-driven Cavity Problem

The thermally-driven cavity problem is one for which there is an enhancement of the rate of
heat transfer for any Rayleigh number, defined now in terms of the distance between the two
vertical surfaces and the temperature difference between them. This result follows from the fact
that natural convection will occur anytime the temperature gradient has a component not aligned
with gravity.

Ivey (1984) did experiments in which he measured the temperature fluctuations. He found
that the motion oscillated in time but gradually approached steady state for Pr=7.1 and Ra = 9.2 x
10%, and for Pr = 6.6 and Ra = 1.2 x 10°, all with an aspect ratio of 1. The case with Pr = 7.1 and
Ra=9.2x10% though, approached the steady state in a monotone fashion, as shown in Figure 6.7.
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Figure 6.7. Temperature traces, A = 1. (a) Ra = 3.9 x 10%, Pr = 82;
(b) Ra = 9.2 x 10% Pr = 7.1; (c) Ra = 1.2 x 10°, Pr = 6.6; Ivey (1984)

Gebbhart, et al. (1988) report that Elder (1965) did experiments with silicone oil (Pr = 1000)
and found secondary flows began at Re =3 x 10, tertiary flows arose for Re greater than 10¢, and
turbulence began at Ra =2 x 10°. :

Paolucci and Chenoweth (1989) did direct numerical simulation using a 121 x 121 non-
uniform mesh. For air (Pr = 0.71), and an aspect ratio, A, of 1.0, they found the following
transient phenomena. For Rayleigh numbers up to 2 x 10° the flow was strictly periodic; then up
to 3 x 10* it was quasi-periodic; then up to 4 x 10* it was non-periodic; finally up to 10" it was
fully turbulent. The time histories of the temperatures in these various cases are shown in the
Figure 6.8. The phase space trajectory of temperature versus one velocity component are shown in
the next Figure 6.9.
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Figure 6.8. Temperature time histories, A = 1; (a) Ra = 1.9 x 10%;
(b) Ra = 2.0 x 10% (c) Ra = 3.0 x 10% (d) Ra = 4.0 x 10%; (e) Ra = 10 Paolucci
and Chenoweth (1989)
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Figure 6.9. Phase space trajectory of temperature versus velocity component u for
A = 1; Paolucci and Chenoweth (1989). (a) Ra = 2 x 10% (b) Ra = 3 x 10% (c) Ra
=4 x 10% (d) Ra = 10%;

This figure clearly shows the periodic behavior at the lowest Ra, then as the Ra is increased it
shows the quasi-periodic behavior, then the chaotic behavior. These authors argue that there are
two modes to the instability. One of them arises at the comers and results in internal waves; this is
called Ra,. The other arises in the thermal boundary layers along the heated wall; this is called
Ra,,. The comer instability generally occurs first when the aspect ratio is small, and the boundary
layer instability occurs first when the aspect ratio is large. The formulas for these critical values are

Ra;=193x 103 A1
Ra, =270 x 108 A™27°

Figure 6.10 shows the dependence of the two critical Rayleigh numbers on the aspect ratio. To the
right of the curves the perturbations to the motion are amplified and they are oscillatory, and to the
left of the curves perturbations to the motion are damped.

For an aspect ratio of A = 1 the critical Ra is 1.93 x 10*. For aspect ratios above 3, the first
instability from steady flow is due to the sidewall boundary layer. For aspect ratios smaller than
that but greater than 0.5, the first instability from steady flow is due to internal waves at the
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Figure 6.10. Critical Rayleigh number as a function of aspect ratio,
Ra; - - -_-Ra,,; Paolucci and Chenoweth (1989)

corners. Above the first critical Ra both phenomena can occur. The authors report that their
calculations did not die away in the same circumstance in which Ivey (1984) measured them dying
away. They indicate that this is due to the Prandtl number. Paolucci and Chenoweth (1989) do
calculations for air, Pr = 0.71, whereas Ivey (1984) did experiments for water, Pr = 7.1. Thus
Paolucci and Chenoweth (1989) did one calculation for Pr = 7.1. They found that the internal
wave instability behaved as Ivey measured it (it approached a steady state), and indeed so did the
boundary layer instability. The flow seemed to approach a steady state in the same time period
used by Ivey (1984) in the experiment. When they continued the calculation for a longer time,
however, they found that the boundary layer instability started. This point illustrates another
difficulty of these calculations: when the solution is slowly changing, is it slowing converging to a
steady state situation, or will it become transient if the calculation is continued further.

Henkes and Hoogendoor (1990) did calculations for Pr = 0.71, resulting in a critical value
of Ra = 2 x 10° separating steady from transient flows , and for Pr = 7.0, resulting in a critical
value of Ra = 4 x 10” separating steady from transient flows. That is, for Ra below 4 x 10° the
flow converges to a steady flow in an oscillating way. They point out that Ivey (1984) obtained
the same behavior for Ra up to 1.2 x 10°, but didn’t do experiments at higher Ra. Thus, theory
and experiment can be compared for Ra < 1.2 x 10°, and they agree. They also say that water
does not show the same instability in the corner that air does. For water, the instability occurs in
the boundary layer. Thus, which type of instability occurs first also depends on Prandtl number.

A number of other articles have presented calculations which help to identify the mesh sizes
needed to solve these problems. Le Quéré (1991) solved numerically for Ra = 10¢, 107, and 10®
(all steady solutions). They obtained Nusselt numbers of 8.825, 16.523, and 30.225,
respectively. His calculations used a pseudo-spectral Chebyshev method with 128 x 128
polynomial expansions.
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Lage and Bejan (1991) did transient simulations using a finite volume method for Pr = 10,
Ra=10". They used a graded mesh and found that a 26 x 26 mesh was not good enough, but 52
x 52 and 104 x 104 gave similar results. To integrate to the point that the solution kept repeating
itself required integrating up to t = 12, where T is

& (RaPr )2
HZ

The time step needed was A ©=0.016 for the 52 x 52 mesh.

Janssen and Henkes (1993) did calculations for Pr = 0.71 using a finite volume method.
They found that for Ra = 10° they got a transition to turbulence and full turbulence for Ra = 2 x
10*. To do the transient calculations they used a 240 x 240 mesh or a 360 x 360 mesh, with
irregular mesh spacing. These two meshes gave equivalent results.

Tagawa and Ozoe (1996) used a 55 x 55 grid for Pr = 1, Ra up to 2 x 107 (the flow was
always steady), using a high-order finite difference method. They also did calculations for Pr =
0.025, and got oscillatory solutions for Ra =5 x 10°. These results again point out that the Ra for
which oscillations occur changes with Prandtl number, generally increasing as the Prandtl number
increases. The calculations at these Rayleigh numbers took the following times to reach steady
state: T=2000 for Pr=1,Ra=2 x 10”; T = 600 for Pr=0.025, Ra=35 x 10°. The definition of T
is

Q|

T=— 1t =
0~

These results give an indication of the time it takes to reach steady state.
Turbulence Models

The direct numerical simulation of turbulence in natural convection situations shows that a
great many terms are needed in the time-dependent calculation. For example, even for a relatively
low Ra =35 x 10%, it is necessary to use (100-200)* points for a 2D calculation, i.e. 10* to 40,000
points (Versteegh and Nieuwstadt, 1999). In 3D the computer resources are immense (for
example, the one calculation taking 400 hours of 2 CRAY computer). These cases are for simple
geometries, which is definitely not the case for the 3D transformer. Thus, other models of
turbulence are considered that simply somewhat the computational task. The models discussed
here are k-€ models, or variants thereof.

In a k-€ model, k represents the turbulent kinetic energy per unit mass and € represents the
rate of dissipation of turbulent kinetic energy. The turbulent viscosity and turbulent diffusivity are
written in terms of these quantities. Two additional equations must be added to the Navier-Stokes
equation and energy equation, and the parameters for these additional equations are chosen to make
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the simulations agree with experiment. Thus, the constants themselves have to be carefully
selected to model a particular situation. Here we discuss a few papers dealing with natural
convection at a boundary layer next to a hot vertical plate and natural convection in a square cavity.

Henkes and Hoogendoorn (1989) compare different k-€ model for natural convection in a
thermal boundary layer. They find that turbulence occurs for Gr, = 2 x 10’ (rather than for Re, =
1.5 x 10° for forced convection along a vertical plate). They also give several references to articles
showing that the turbulent model (with no forcing of k or € at the walls) can give the laminar flow
solution. Thus, they do not ‘turn on’ the turbulence in their k-€ model until Gr, = 2 x 10°. They
also find that a special, low-Reynolds number turbulence model is necessary, and find that due to
Chien (1980, 1982), and Jones and Launder (1972) perform the best. The standard k-& model can
be used if it is modified using Chien’s D and f, functions. Pironneau (1999) say that the transition
to turbulence cannot be determined using a k-€ model.

Peeters and Henkes (1992) say that the k-€ model is not always good in complex
geometries, and they examine a Reynolds-stress model. This model is even more complicated than
the k- model. They also point out that different constants are needed in the k-€ model in buoyant
flows than in forced flows, presumably because of the lower Reynolds number in buoyant flows.
While the Reynolds-stress model does show better agreement with experimental results for the
details of the turbulent flow, the k- model shows satisfactory agreement with the macroscopic
features even though the spatial distribution of things like the turbulent kinetic ehergy might be
incorrect.

The square cavity is different from, and more complicated than, the boundary layer flow.
This is because of the interaction of the instabilities from internal waves (beginning in the comner)
and the boundary layer instabilities. As shown above, which of these occurs in any situation
depends on the Rayleigh number, the Prandtl number, and the aspect ratio. Henkes, ef al. (1991)
have compared low-Reynolds number k-&€ models of turbulence in a square cavity. They find that
the models of Chien (1980, 1982), and Jones and Launder (1972) are the best. They also clearly
lay out the facts that the transition to turbulence is predicted for different Rayleigh numbers,
depending on the model. Some of the models can predict laminar flow (i.e. a laminar flow is
consistent with the model and especially the boundary conditions). Indeed, in these models it is
sometimes necessary to ‘seed’ the turbulence in order for it to be the final solution. The results are
as follows.

k-e model Chien Jones-Launder
Ra,, air, Pr=0.71 10° 10 10"
Ra,, water, Pr= 6.7 1o" 10 10

This paper says that accurate experiments for the square cavity do not exist at high Rayleigh

number, and that the proper wall functions are still being derived. They estimate that the number
of time steps needed to approach steady state in this problem is Ra"; they have a special initial
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condition to reduce this to Ra". (For Ra = 10", these are 10’ and 4000 steps, respectively.)
Their simulations are time-dependent, but integrated on a time scale that is longer than the turbulent
fluctuations. They say:

“It seems a bit strange that, despite the time-averaging, the unsteady terms remain in
the formulation. However, the time-averaging is restricted to the broad-band
spectrum of turbulence, whereas the remaining unsteady terms account for all weak
unsteadiness that does not belong to the turbulence. We can also define that the
unsteady terms represent all unsteadiness that is not modelled by the turbulence
model.”

Their simulations show oscillations due to the internal gravity waves, but they die out in time.

Liu and Wen (1999) advance another model of turbulent buoyant flows. They were able to
do calculations for the square cavity on a 60 x 60 graded mesh for air at a Rayleigh number of 1.58
x 10°. They had to take about 2000 time steps to approach steady state.

Definition of Model Problems

The three model problems shown above will be solved using a k-&¢ model in FIDAP.
FIDAP contains a low-Reynolds number turbulence model, called the Wilcox model. This model
has not been compared with natural convection simulations, as summarized above. In fact, the
reference to it is an industrial report, which may not even be available. However, it will be used
with FIDAP since the standard k-& model is not appropriate for natural convection problems.
Generally, a 49 x 49 graded mesh will be used, being careful to check that there are several
elements contained within any boundary layer that forms. The Rayleigh numbers to be studied are
computed using the geometry of the situation, the fluid properties for a ferrofluid, and the A T
corresponding to the maximum temperature rise that can be tolerated in a transformer minus the
surrounding temperature, 125 - 25=100° C. (This is the working hypothesis, although it could
be changed as calculations proceed.) The physical properties are given in Table 6.1.

Table 6.1. Preferred Physical Properties

Property Shell Oil Ferrofluid
density p =849 913 kg/m’
viscosity i =3.81x10"  0.00665 kg/m s
heat capacity Cp, = 2038 1922 J/kg K
thermal conductivity k,=0.122 0.127 W/m K
thermal expansion coefficient B=7.17x10* 7.17x10"K"
K(A/mK) 12.
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Thus, we have
Ra=1.33x 10" AT L for a ferrofluid, Pr = 100.6
Ra=2.22 x 10" A T L? for the Shell oil, Pr = 63.6.

When AT =100, and L = 0.01 m (appropriate for a duct) the Rayleigh numbers are: Ra = 1.33 x
10¢ for the ferrofluid and 2.22 x 10% for the Shell oil. When AT = 100, and L = 0.1 m
(appropriate for the outer edge) the Rayleigh numbers are: Ra = 1.33 x 10° for the ferrofluid and
2.22 x 10° for the Shell oil.

Summary of Known Results

There is disagreement between different authors as to the critical Rayleigh number for
transition to turbulence, probably because the transition is not abrupt, but arises from instabilities
that must grow before turbulence begins. For the fluid layer problem, turbulence occurs for a
Rayleigh number of 2.5 x 10% but transient and chaotic flows occur for Ra between 90,000 and
2.5x 10°. A plot of the flow regimes is shown in Figure 6.11. For the heated cavity problem,
several authors have calculated transition to turbulence at Ra = 2 x 10* for fluids with Pr = 0.71
(air) and at Ra=4 x 10° for fluids with Pr = 7 (water). Thus, the Rayleigh number that would
result in turbulenct flow in transformer elements is not known precisely, especially since the
Prandtl number is much larger ( between 60 and 100), which makes the present study valuable.
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Figure 6.11. Flow Regimes in a Horizontal Fluid Layer Heated From Below,
Gebhart, et al. (1988); original from Krishnamurti (1970).
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